Investigating turbulent structure of ionospheric plasma velocity using the Halley SuperDARN radar

نویسنده

  • G. A. Abel
چکیده

We present a detailed analysis of the spatial structure of the ionospheric plasma velocity in the nightside Fregion ionosphere, poleward of the open-closed magnetic field line boundary (OCB), i.e. in regions magnetically connected to the turbulent solar wind. We make use of spatially distributed measurements of the ionospheric plasma velocity made with the Halley Super Dual Auroral Radar Network (SuperDARN) radar between 1996 and 2003. We analyze the spatial structure of the plasma velocity using structure functions and P(0) scaling (where P(0) is the value of the probability density function at 0), which provide simple methods for deriving information about the scaling, intermittency and multi-fractal nature of the fluctuations. The structure functions can also be compared to values predicted by different turbulence models. We find that the limited range of velocity that can be measured by the Halley SuperDARN radar restricts our ability to calculate structure functions. We correct for this by using conditioning (removing velocity fluctuations with magnitudes larger than 3 standard deviations from our calculations). The resultant structure functions suggest that Kraichnan-Iroshnikov versions of P and log-normal models of turbulence best describe the velocity structure seen in the ionosphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of mixed scatter on SuperDARN convection maps

The SuperDARN radars map high-latitude ionospheric plasma drift velocities by measuring the Doppler frequency shift of HF signals scattered by decameter electron density irregularities. In many cases the ionospheric returns are contaminated by strong scatter from the ground or sea surface. In this paper we develop and test a two-component fitting algorithm to separate ionospheric and surface sc...

متن کامل

A survey of plasma irregularities as seen by the midlatitude Blackstone SuperDARN radar

[1] The Super Dual Auroral Radar Network (SuperDARN) is a chain of HF radars that monitor plasma dynamics in the ionosphere. In recent years, SuperDARN has expanded to midlatitudes in order to provide enhanced coverage during geomagnetically active periods. A new type of backscatter from F region plasma irregularities with low Doppler velocity has been frequently observed on the nightside durin...

متن کامل

An assessment of the “map-potential” and “beam-swinging” techniques for measuring the ionospheric convection pattern using data from the SuperDARN radars

The SuperDARN HF coherent scatter radars (Greenwald et al., 1995) provide line-of-sight (l-o-s) velocity measurements of ionospheric convection flow over the polar regions of the northern and southern hemispheres. A number of techniques have been developed in order to obtain 2-D plasma flow vectors from these l-o-s observations. This study entails a comparison of the ionospheric flow vectors de...

متن کامل

Spectral width of SuperDARN echoes: measurement, use and physical interpretation

The Doppler velocity and spectral width are two important parameters derived from coherent scatter radar systems. The Super Dual Auroral Radar Network (SuperDARN) is capable of monitoring most of the high latitude region where different boundaries of the magnetosphere map to the ionosphere. In the past, the spectral width, calculated from SuperDARN data, has been used to identify the ionosphere...

متن کامل

Auroral streamers and magnetic flux closure

[1] On 7 December 2000 at 2200 UT an auroral streamer was observed to develop above Scandinavia with the IMAGE-FUV global imagers. The ionospheric equivalent current deduced from the MIRACLE-IMAGE Scandinavian ground-based network of magnetometers is typical of a substorm-time streamer. Observations of the proton aurora using the SI12 imager onboard the IMAGE satellite are combined with measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008